

A Holistic Microgrid Energy Management System for Improved Energy Efficiency and Renewable Integration

Bobby Sagoo, GE Digital Energy

Microgrid Symposium – Santiago, Chile September 2013

Approach / Technologies

- 1. Supervisory Control
- 2. Holistic Energy Approach
- 3. Optimal Dispatch
- 4. Demand Optimization
- 5. IVVC
- 6. Communication

Microgrid Control Approach

Supervisory Controls

- · Optimal Dispatch to optimize electrical and thermal performance and cost
- Manage feeder connection to bulk grid
- Manage renewable intermittency
- Demand Optimization

Integrated Volt / VAR Control

Power, Frequency, Voltage, VARs

Holistic Energy Viewpoint

Electrical Dispatch with Tri-Gen Optimization

- Overall Energy Efficiency > 70%

3.3 Optimal Dispatch

The process of allocating the required load demand between the available resources such that the cost of operation is minimized.

The optimal dispatch algorithm implements *Model Predictive Control* using:

- Load forecasts
- Generation forecasts (dispatchable and non-dispatchable)
- and Stored Energy

Additional optimization constraints include:

- Unit Commitment, Start/Stop
- Min/max power/thermal output
- Generator Efficiency, Storage Efficiency
- Speed to ramp up/down output
- Electricity—to-thermal ratio in Combined-Heat-Power (CHP) source
- Market price of electricity (if connected to the utility grid) and fuel for DER Assets

Optimal Dispatch

Demand Optimization

- 1. Emergency Load Shedding
- 2. Load as a Resource
 - Building Energy Management
 - Backup Gensets

Emergency Load Shedding

An intelligent scheme that will arm the required amount of load to be shed in order to maintain system stability

- Prioritization of loads & generation
- Dynamic load shedding based on potential generation deficit
- Dynamic generation shedding based on potential generation excess

Shedding may be triggered by a fast message sent over communications or by a local measurement of frequency

BEM: Heating/Cooling Demands

Thermal Load Management & Demand Limit

9

Integrated Volt / VAR Control (IVVC)

MG Distribution Grid Optimization

Optimize **Voltage** and **VAR** profiles to minimize distribution losses and manage load

Communication

Communications & Cyber Security

Case Study: 29 Palms Microgrid

Overview

Department of Defense (DoD):

- manages > 577,500 buildings and structures
- worth \$712 billion
- located on more than 400 installations in the United States
- spends \$3.5 billion per year on facility energy consumption
- is the largest single energy consumer in the Nation
- has policies to:
 - increase energy conservation,
 - reduce energy and water demand, and
 - increase the use of renewable energy
 - reduce emissions

MAGTFTC / MCAGCC

Marine Air Ground Task Force Training Command / Marine Corps Air Ground Combat Center

Objective:

Enhance and demonstrate the advanced microgrid control technologies at a suitable DoD installation to improve energy efficiency and increase energy security

ESTCP Project Purpose:

- 1. Execute the technology demonstration to validate the technology's performance and expected operational costs.
 - Data-based scientific proof of the technical claims
 - Collect Cost and environmental performance data to allow realistic estimates for full scale implementation
- 2. Transfer the technology
 - Work with the intended DoD user community to achieve their acceptance and feedback on the usefulness of the technology
- 3. Provide data and support to achieve regulatory and end-user acceptance

29 Palms Microgrid

Phase 1: Technical Highlights

Advanced Energy Management for Distribution-based Resources: Completed all the following new features of microgrid:

- Optimal Dispatch of Distributed Energy Resources (DER) both during gridconnected and islanded conditions – development complete
- Dispatch capability of electrical and thermal assets completed
- Built-in hooks of future enhancements like new CHP, new PV and energy storage (more things to optimize) - completed
- Interface of GE equipment with Legacy Systems from JCI, Rockwell etc.
- Testing in mixed type of communication media: wireless, Ethernet
- Testing Mixed type of protocols: Modbus, Bacnet, RSLinx
- Mixed mode of operations: Advisory, Automated, Manual and Legacy

Phase II – Integrated Volt/Var Control

The objective functions analyzed for application to military bases are:

- Minimize peak load (through conservation voltage reduction)
- Minimize line power losses
- Minimize number of cap bank operations
- Voltage flattening

Phase III – Battery Energy Storage System

Primary Technical Objectives:

- Increase Power Factor of Co-Generation facility
- Increase overall Solar Power Plant capacity factor, specifically during islanded operation
- Provide peak-shaving during high demand periods and reduce peak demand charges

Secondary Technical Objectives:

- Assess sodium-metal-halide energy storage technology in a grid-tied utility application.
- Develop and exercise algorithm's for
 - Voltage support
 - Frequency regulation
 - Low voltage ride through (LVRT)
 - Uninterruptable Power Supply (UPS) operation.

Questions?

Appendix – Test Results

Baseline case powers (Jul 15 2010)

Baseline case voltages (Jul 15 2010)

Baseline case Voltages (Aug 15 2010)

DP results for Jul 15 2010

Results of DP on Voltages (Jul 15 2010)

DP results for Aug 15 2010

Cap banks supplying half of Q during CHP loss

Results of DP on Voltages (Aug 15 2010)

